It is shown that a K-quasiminimizer u for the one-dimensional p-Dirichlet integral is a K'-quasiminimizer for the q-Dirichlet integral, 1 <= q < p(1)(p, K), where p(1)(p, K)> p; the exact value for p(1)(p, K) is obtained. The inverse function of a non-constant u is also K ''-quasiminimizer for the s-Dirichlet integral and the range of the exponent s is specified. Connections between quasiminimizers, superminimizers and solutions to obstacle problems are studied.

Quasiminimizers in one dimension: integrability of the derivate, inverse function and obstacle problems

SBORDONE, CARLO
2007-01-01

Abstract

It is shown that a K-quasiminimizer u for the one-dimensional p-Dirichlet integral is a K'-quasiminimizer for the q-Dirichlet integral, 1 <= q < p(1)(p, K), where p(1)(p, K)> p; the exact value for p(1)(p, K) is obtained. The inverse function of a non-constant u is also K ''-quasiminimizer for the s-Dirichlet integral and the range of the exponent s is specified. Connections between quasiminimizers, superminimizers and solutions to obstacle problems are studied.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12570/17762
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact