The oculomotor system integrates a variety of visual signals into appropriate motor plans, but such integration can have widely varying time scales. For example, smooth pursuit eye movements to follow a moving target are slower and longer lasting than saccadic eye movements and it has been suggested that initiating a smooth pursuit eye movement involves an obligatory "open-loop" interval in which new visual motion signals presumably cannot influence the ensuing motor plan for up to 100 ms after movement initiation. However, this view is contrary to the idea that the oculomotor periphery has privileged access to short-latency visual signals. Here, we show that smooth pursuit initiation is sensitive to visual inputs, even in open-loop intervals. We instructed male rhesus macaque monkeys to initiate saccade-free smooth pursuit eye movements and injected a transient, instantaneous eye position error signal at different times relative to movement initiation. We found robust short-latency modulations in eye velocity and acceleration, starting only ∼50 ms after transient signal occurrence and even during open-loop pursuit initiation. Critically, the spatial direction of the injected position error signal had predictable effects on smooth pursuit initiation, with forward errors increasing eye acceleration and backward errors reducing it. Catch-up saccade frequencies and amplitudes were also similarly altered ∼50 ms after transient signals, much like the well known effects on microsaccades during fixation. Our results demonstrate that smooth pursuit initiation is highly sensitive to visual signals and that catch-up saccade generation is reset after a visual transient.SIGNIFICANCE STATEMENT Smooth pursuit eye movements allow us to track moving objects. The first ∼100 ms of smooth pursuit initiation are characterized by smooth eye acceleration and are overwhelmingly described as being "open-loop"; that is, unmodifiable by new visual motion signals. We found that all phases of smooth pursuit, including the so-called open-loop intervals, are reliably modifiable by visual signals. We injected transient flashes resulting in very brief, spatially specific position error signals to smooth pursuit and observed very short-latency changes in smooth eye movements to minimize such errors. Our results highlight the flexibility of the oculomotor system in reacting to environmental events and suggest a functional role for the pervasiveness of visual sensitivity in oculomotor control brain regions.
Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation
Buonocore, Antimo
;
2019-01-01
Abstract
The oculomotor system integrates a variety of visual signals into appropriate motor plans, but such integration can have widely varying time scales. For example, smooth pursuit eye movements to follow a moving target are slower and longer lasting than saccadic eye movements and it has been suggested that initiating a smooth pursuit eye movement involves an obligatory "open-loop" interval in which new visual motion signals presumably cannot influence the ensuing motor plan for up to 100 ms after movement initiation. However, this view is contrary to the idea that the oculomotor periphery has privileged access to short-latency visual signals. Here, we show that smooth pursuit initiation is sensitive to visual inputs, even in open-loop intervals. We instructed male rhesus macaque monkeys to initiate saccade-free smooth pursuit eye movements and injected a transient, instantaneous eye position error signal at different times relative to movement initiation. We found robust short-latency modulations in eye velocity and acceleration, starting only ∼50 ms after transient signal occurrence and even during open-loop pursuit initiation. Critically, the spatial direction of the injected position error signal had predictable effects on smooth pursuit initiation, with forward errors increasing eye acceleration and backward errors reducing it. Catch-up saccade frequencies and amplitudes were also similarly altered ∼50 ms after transient signals, much like the well known effects on microsaccades during fixation. Our results demonstrate that smooth pursuit initiation is highly sensitive to visual signals and that catch-up saccade generation is reset after a visual transient.SIGNIFICANCE STATEMENT Smooth pursuit eye movements allow us to track moving objects. The first ∼100 ms of smooth pursuit initiation are characterized by smooth eye acceleration and are overwhelmingly described as being "open-loop"; that is, unmodifiable by new visual motion signals. We found that all phases of smooth pursuit, including the so-called open-loop intervals, are reliably modifiable by visual signals. We injected transient flashes resulting in very brief, spatially specific position error signals to smooth pursuit and observed very short-latency changes in smooth eye movements to minimize such errors. Our results highlight the flexibility of the oculomotor system in reacting to environmental events and suggest a functional role for the pervasiveness of visual sensitivity in oculomotor control brain regions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.