: For successful adaptive behavior, exogenous environmental events must be sensed and reacted to as efficiently as possible. In the lab, the mechanisms underlying such efficiency are often studied with eye movements. Using controlled trials, careful measures of eye movement reaction times, directions, and kinematics suggest a form of "exogenous" oculomotor capture by external events. However, even in controlled trials, exogenous onsets necessarily come asynchronously to internal brain state. We argue that variability in the effectiveness of "exogenous" capture is inevitable. We review an extensive set of evidence demonstrating that before orienting must come interruption, a process that partially explains such variability. More importantly, we present a novel neural mechanistic account of interruption, leveraging the presence of early sensory processing capabilities in the very final stages of oculomotor control brain circuitry.
The inevitability of visual interruption
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Buonocore, Antimo
;
	
		
		
	
			2023-01-01
Abstract
: For successful adaptive behavior, exogenous environmental events must be sensed and reacted to as efficiently as possible. In the lab, the mechanisms underlying such efficiency are often studied with eye movements. Using controlled trials, careful measures of eye movement reaction times, directions, and kinematics suggest a form of "exogenous" oculomotor capture by external events. However, even in controlled trials, exogenous onsets necessarily come asynchronously to internal brain state. We argue that variability in the effectiveness of "exogenous" capture is inevitable. We review an extensive set of evidence demonstrating that before orienting must come interruption, a process that partially explains such variability. More importantly, we present a novel neural mechanistic account of interruption, leveraging the presence of early sensory processing capabilities in the very final stages of oculomotor control brain circuitry.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
